Search results for "protein folding"

showing 10 items of 196 documents

Nucleation and Growth of CaCO3 Mediated by the Egg-White Protein Ovalbumin: A Time-Resolved in situ Study Using Small-Angle Neutron Scattering

2008

Mineralization of calcium carbonate in aqueous solutions starting from its initiation was studied by time-resolved small-angle neutron scattering (SANS). SANS revealed that homogeneous crystallization of CaCO 3 involves an initial formation of thin plate-shaped nuclei which subsequently reassemble to 3-dimensional particles, first of fractal and finally of compact structure. The presence of the egg-white protein ovalbumin leads to a different progression of mineralization through several stages; the first step represents amorphous CaCO 3, whereas the other phases are crystalline. The formation and dissolution of the amorphous phase is accompanied by Ca (2+)-mediated unfolding and cross-link…

Protein FoldingOvalbuminProtein ConformationChemistryNeutron diffractionNucleationWaterGeneral ChemistryNeutron scatteringBiochemistrySmall-angle neutron scatteringCatalysisCalcium Carbonatelaw.inventionAmorphous solidCalcium ChlorideNeutron DiffractionCrystallographyColloid and Surface ChemistrylawVateriteScattering Small AngleCrystallizationCrystallizationDissolutionJournal of the American Chemical Society
researchProduct

An overview on chemical structures as ΔF508-CFTR correctors

2019

Deletion of phenylalanine at position 508 (F508del) in the CFTR protein, is the most common mutation causing cystic fibrosis (CF). F508del causes misfolding and rapid degradation of CFTR protein a defect that can be targeted with pharmacological agents termed “correctors”. Correctors belong to various chemical classes but are generally small molecules based on nitrogen sulfur or oxygen heterocycles. The mechanism of action of correctors is generally unknown but there is experimental evidence that some of them can directly act on mutant CFTR improving folding and stability. Here we overview the characteristics of the various F508del correctors described so far to obtain indications on key ch…

Protein FoldingCystic FibrosisCFTR correctorMutantCystic Fibrosis Transmembrane Conductance RegulatorPyrimidinonesmedicine.disease_cause01 natural sciencesF508del-CFTR03 medical and health sciencesMutant proteinDrug DiscoverymedicineAnimalsHumansCFTR030304 developmental biologyPharmacology0303 health sciencesMutationCFTR correctorsbiology010405 organic chemistryChemistryOrganic ChemistryCFTR; CFTR correctors; Cystic fibrosis; Cystic fibrosis transmembrane conductance regulator; F508del-CFTR; Animals; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Mutation; Protein Folding; Pyrimidinones; ThiazolesGeneral MedicineSettore CHIM/08 - Chimica FarmaceuticaSmall moleculeCystic fibrosis transmembrane conductance regulator0104 chemical sciencesCell biologyThiazolesMechanism of actionCystic fibrosiMutationbiology.proteinmedicine.symptomProtein Aδf508 cftrEuropean Journal of Medicinal Chemistry
researchProduct

Targeting heat shock proteins in cancer

2010

Heat shock proteins (HSPs) HSP27, HSP70 and HSP90 are powerful chaperones. Their expression is induced in response to a wide variety of physiological and environmental insults including anti-cancer chemotherapy, thus allowing the cell to survive to lethal conditions. Different functions of HSPs have been described to account for their cytoprotective function, including their role as molecular chaperones as they play a central role in the correct folding of misfolded proteins, but also their anti-apoptotic properties. HSPs are often overexpressed in cancer cells and this constitutive expression is necessary for cancer cells' survival. HSPs may have oncogene-like functions and likewise mediat…

Protein Foldingendocrine systemCancer ResearchCell SurvivalProtein ConformationCellAntineoplastic AgentsApoptosisBreast NeoplasmsHsp27NeoplasmsHeat shock proteinmedicineAnimalsHumansHSP70 Heat-Shock ProteinsHSP90 Heat-Shock ProteinsHeat-Shock ProteinsCell ProliferationbiologyCell growthCancermedicine.diseaseHsp90Hsp70Cell biologymedicine.anatomical_structureOncologyDrug Resistance NeoplasmCancer cellbiology.proteinMolecular ChaperonesCancer Letters
researchProduct

The role of heat shock proteins in neoplastic processes and the research on their importance in the diagnosis and treatment of cancer

2021

Heat shock proteins (HSPs) are chaperones with highly conservative primary structure, necessary in the processes of protein folding to the most energetically advantageous conformation and maintaining their stability. HSPs perform a number of important functions in various cellular processes and are capable of modulating pathophysiological conditions at the cellular and systemic levels. An example is the high level of HSP expression in neoplastic tissues, which disrupts the apoptosis of transformed cells and promotes the processes of proliferation, invasion, and metastasis. In addition, an increasing amount of information is appearing about the participation of HSPs in the formation of multi…

Review PaperResearch groupsbusiness.industryDisease progressionRapoptosisCancermedicine.diseaseanti-cancer therapy.Cancer treatmentMetastasisOncologyHeat shock proteinheat shock proteinsmedicineCancer researchMedicineNeoplastic ProcessescancerRadiology Nuclear Medicine and imagingProtein foldingbusinessanti-cancer therapyContemporary Oncology
researchProduct

Methionine in a protein hydrophobic core drives tight interactions required for assembly of spider silk

2019

Web spiders connect silk proteins, so-called spidroins, into fibers of extraordinary toughness. The spidroin N-terminal domain (NTD) plays a pivotal role in this process: it polymerizes spidroins through a complex mechanism of dimerization. Here we analyze sequences of spidroin NTDs and find an unusually high content of the amino acid methionine. We simultaneously mutate all methionines present in the hydrophobic core of a spidroin NTD from a nursery web spider’s dragline silk to leucine. The mutated NTD is strongly stabilized and folds at the theoretical speed limit. The structure of the mutant is preserved, yet its ability to dimerize is substantially impaired. We find that side chains of…

congenital hereditary and neonatal diseases and abnormalitiesProtein Foldinggenetic structuresProtein ConformationScienceSilkmacromolecular substancesCircular dichroismcomplex mixturesArticleMethionineddc:590ddc:570AnimalsAmino Acid Sequencelcsh:ScienceFluorescence spectroscopySequence Homology Amino AcidfungiQtechnology industry and agricultureSpidersSpectrometry FluorescenceMutationThermodynamicslcsh:QProtein MultimerizationFibroinsSolution-state NMRHydrophobic and Hydrophilic InteractionsAlgorithmsNature Communications
researchProduct

A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model

2014

Chaperonins mediate protein folding in a cavity formed by multisubunit rings. The human CCT has eight non-identical subunits and the His147Arg mutation in one subunit, CCT5, causes neuropathy. Knowledge is scarce on the impact of this and other mutations upon the chaperone's structure and functions. To make progress, experimental models must be developed. We used an archaeal mutant homolog and demonstrated that the His147Arg mutant has impaired oligomeric assembly, ATPase activity, and defective protein homeostasis functions. These results establish for the first time that a human chaperonin gene defect can be reproduced and studied at the molecular level with an archaeal homolog. The major…

Models MolecularProtein FoldingProtein ConformationProtein subunitMutantMolecular Sequence Datahuman CCT5 gene mutation molecular dynamics neuropathy archaeal modelSequence alignmentGene mutationBiologyArticleChaperonin03 medical and health sciences0302 clinical medicineProtein structureHumansProtein Interaction Domains and MotifsAmino Acid Sequence030304 developmental biologyGenetics0303 health sciencesMultidisciplinarySettore BIO/16 - Anatomia UmanaArchaeaSettore CHIM/08 - Chimica FarmaceuticaChaperone (protein)Mutationbiology.proteinThermodynamicsProtein foldingProtein MultimerizationSequence Alignment030217 neurology & neurosurgeryChaperonin Containing TCP-1
researchProduct

The tetrameric α-helical membrane protein GlpF unfolds via a dimeric folding intermediate.

2011

Many membrane proteins appear to be present and functional in higher-order oligomeric states. While few studies have analyzed the thermodynamic stability of α-helical transmembrane (TM) proteins under equilibrium conditions in the past, oligomerization of larger polytopic monomers has essentially not yet been studied. However, it is vital to study the folding of oligomeric membrane proteins to improve our understanding of the general mechanisms and pathways of TM protein folding. To investigate the folding and stability of the aquaglyceroporin GlpF from Escherichia coli, unfolding of the protein in mixed micelles was monitored by steady-state fluorescence and circular dichroism spectroscopy…

Gel electrophoresisCircular dichroismProtein FoldingChemistryCircular DichroismEscherichia coli ProteinsMembrane ProteinsAquaporinsBiochemistryMicelleTransmembrane proteinProtein Structure SecondaryFolding (chemistry)CrystallographyKineticsMembrane proteinBiophysicsEscherichia coliProtein foldingChemical stabilityDimerizationProtein UnfoldingBiochemistry
researchProduct

Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy.

2008

Hsp60 in eukaryotes is considered typically a mitochondrial chaperone (also called Cpn60) but in the last few years it has become clear that it also occurs in the cytosol, the cell surface, the extracellular space, and in the peripheral blood. Studies with prokaryotic models have shown that Hsp60 plays a role in assisting nascent polypeptides to reach a native conformation, and that it interacts with Hsp10 (which also resides in the mitochondria and is also named Cpn10). In addition to its role in polypeptide folding in association with Hsp10, other functions and interacting molecules have been identified for Hsp60 in the last several years. Some of these newly identified functions are asso…

MalechaperoninCancer ResearchProtein Foldinganimal structuresChaperoninsCell SurvivalCelldifferential diagnosiGene ExpressionAntineoplastic AgentsApoptosisBiologyMitochondrionmedicine.disease_causeBioinformaticsDiagnosis Differentialtumor-cell survivalCell Line TumorNeoplasmstumor diagnosiExtracellularmedicineHumansHsp60 (Cpn60)chaperonotherapyPharmacologyClinical Oncologymonitoring response to treatmentanti-tumor immune responsefungiHsp60 (Cpn60); tumor-cell survival; apoptosis; tumor diagnosis; differential diagnosis; assessing prognosis; monitoring response to treatment; chaperonotherapy; anti-tumor immune response; chaperonin; protein foldingassessing prognosiChaperonin 60PrognosisapoptosiCell biologyCytosolmedicine.anatomical_structureOncologyChaperone (protein)biology.proteinMolecular MedicineHSP60FemaleCarcinogenesisSignal TransductionCancer biologytherapy
researchProduct

Template-Directed Protein Folding into a Metastable State of Increased Activity

1995

The principal objective of this work was to distinguish between kinetic and thermodynamic reaction control in protein folding. The deleterious effects of a specific mutation on spontaneous refolding competence were analyzed for this purpose. A Bowman-Birk-type proteinase inhibitor of trypsin and chymotrypsin was selected as a double-headed model protein to facilitate the detection of functional irregularities by the use of functional assays. The parent protein spontaneously folds into a single, fully active and thermodynamically stable state in a redox buffer after reduction/denaturation. By contrast, the properties of a P'1Ser--Pro variant in the trypsin-reactive subdomain differ before an…

Protein FoldingProtein ConformationMolecular Sequence DataPopulationDNA RecombinantPhi value analysisBiochemistryDenaturation (biochemistry)Amino Acid SequenceeducationConformational isomerismTrypsin Inhibitor Bowman-Birk Soybeaneducation.field_of_studyChymotrypsinBase SequencebiologyChemistryGenetic VariationContact orderSolutionsKineticsCrystallographyModels Chemicalbiology.proteinThermodynamicsProtein foldingDownhill foldingEuropean Journal of Biochemistry
researchProduct

Membrane topology and post-translational modification of the Saccharomyces cerevisiae essential protein Rot1.

2007

ROT1 is an essential gene that has been related to cell wall biosynthesis, the actin cytoskeleton and protein folding. In order to help to understand its molecular function, we carried out a characterization of the Rot1 protein. It is primarily located at the endoplasmic reticulum-nuclear membrane facing the lumen. Rot1 migrates more slowly than expected, which might suggest post-translational modification. Our results indicate that Rot1 is a protein that is neither GPI-anchored nor O-glycosylated. In contrast, it is N-glycosylated. By a directed mutagenesis of several Asn residues, we identified that the protein is simultaneously glycosylated at N103, N107 and N139. Although the mutation o…

Vesicle-associated membrane protein 8Saccharomyces cerevisiae ProteinsMolecular Sequence DataBioengineeringmacromolecular substancesSaccharomyces cerevisiaeBiologyEndoplasmic ReticulumApplied Microbiology and BiotechnologyBiochemistryProtein structureSEC62Gene Expression Regulation FungalGeneticsAmino Acid SequenceCell MembraneMembrane ProteinsActin cytoskeletonCell biologyTransport proteinProtein Structure TertiaryTransmembrane domainProtein TransportBiochemistryMembrane topologyProtein foldingProtein Processing Post-TranslationalBiotechnologyMolecular ChaperonesYeast (Chichester, England)
researchProduct